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Abstract-The problem of edge debonding in patched elastic plates is considered for a variety of
axisymmetric loading and support conditions. The problems are approached from a unified point
of view. as a moving interior boundaries problem in the calculus of variations, incorporating a
Griffith type energy criterion for debonding. This results in a selfconsistent model for the intact and
debonded portions of the composite structure as well as for the primitive structures which comprise
the system. and in addition yields the conditions which define equilibrium configurations of a
propagating contact zone boundary and a propagating bond zone boundary. The latter yields the
corresponding energy release rates for debonding. The situation of edge contact is also considered.
Analytical solutions to the set of problems of interest are presented. Extensive numerical simulations
based on these solutions are presented and yield results in the form of threshold curves which
characterize the behavior of the evolving composite structure under load. 't' 1997 Elsevier Science
Ltd.

l. INTRODUCTION

The configuration of a secondary structure bonded to a primary structure corresponds to
a variety of contemporary structural systems. These range from bonded sensors and lap­
joints (see, for example, Oplinger, 1994) to repair patches adhered to base structures (see,
for example, Baker, 1993; Chiu et al., 1994; Chue et al., 1994; Park et al., 1992; Paul and
Jones, 1992; Roderick, 1980; Sih and Hong, 1989; Tarn and Shek, 1991). A relatively
comprehensive survey of the literature may be found in the papers by Bottega (1995) and
Bottega and Loia (1996), and thus is not repeated here for brevity. We remark, however,
that the problem of twin circular patches (one on each major bounding surface) bonded
to a plate subjected to in-plane edge loading was considered by Sih and Hong (1989). In
their study, bending effects were excluded as a result of geometrical and loading symmetry
about the center plane of the plate. However, the effects of the presence of edge debonds,
located in two specific regions of the structure, on the propagation of a thickness crack was
assessed.

As debonding alters the behavior of the composite structure formed by the adhesion
of the two primitive structures, and compromises its effectiveness, the problem of edge
debonding is relevant to understanding the performance and integrity of such structures.
In recent studies by Bottega (1995), Bottega and Loia (1996), and Loia and Bottega
(1995a, b) the issue of edge debonding was examined for a number of mathematically one­
dimensional configurations. A variety of loading and support conditions were considered,
for both flat and curved structures where bending effects were relevant. In the present study,
we consider an analogous configuration which, though mathematically one-dimensional
due to assumed azimuthal symmetry of the structure and loading, nevertheless possesses
some inherent effects due to the multi-dimensional physical nature and added constraints
of the structure. We thus examine edge debonding of a circular plate to which a circular
patch is concentrically adhered to one of the plate's surfaces. Several loading conditions
are considered (see Fig. I). These include: (i) applied radial (in-plane) tension, (ii) transverse
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Fig. I. Patched circular plate under various loading conditions: (a) applied radial tension, (b)
transverse edge/centerpoint loading, (c) applied transverse pressure (shown with clamped-fixed

supports).

edge loading, and (iii) applied transverse pressure. The effects of support conditions on the
behavior of the evolving structure are examined as well.

The problems are approached, from a unified point of view in the spirit of Bottega, for
example, (1983 and 1995) and Bottega and Loia (1996), as moving intermediate boundaries
problems in the calculus of variations, and incorporate von Karman's plate theory as the
mathematical model for the base plate and the patch individually, and a Griffith type energy
criterion to govern debonding. This results in a self-consistent mathematical model of the
system represented by the set of governing differential equations for the intact portion of
the composite structure, for the debonded structure in a region of mutual contact between
the patch and the base plate, and for the individual primitive plates. We also include the
possibility of (sliding) contact of the edge of the patch with the base plate. In addition to
the boundary and matching conditions, we obtain the conditions which define the locations
of the variable intermediate boundaries of the "contact zone" and of the bonded region,
which correspond to equilibrium configurations of the evolving structure (the transversality
conditions). The latter condition yields the (self-consistent) energy release rates for the
problems of interest. Closed form solutions to the problems of interest are presented.
Finally, results corresponding to detailed numerical simulations based on these solutions
are presented and reveal characteristic behavior of the evolving structure.

2. FORMULATION

Consider a circular elastic plate of unit (non dimensional) radius to which a circular
elastic patch of normalized radius Rp < 1 is centrally located and adhered over the region
0, :0 ~ r ~ a (a ~ Rp ), as shown in Fig. 2, where r is the non dimensional radial coordinate.
In the preceding, and in what follows, all length scales are normalized with respect to the
dimensional radius, R, of the base plate. The region 0, will be referred to as the "bond
zone". In addition, let a region of sliding contact; O2 : a ~ r ~ b (b ~ Rp ), the "contact
zone", exist adjacent to the bonded region. Finally let us designate the region 0 3 : b ~ r ~ 1
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Fig. 2. Cross section of plate showing characteristic lengths and coordinates.

as the "lift zone" or "zone of separation". In this region, the patch and base plate do not
maintain contact. Rather, the patch is considered to be lifted away from the base plate in
this region. We shall also define the sub region Q3p: b < r ~ Rp (Q 3p C Q3) which defines
the domain upon which the separated segment of the patch is defined. When referring to
region Q3' it will be understood that the patch is defined on the sub region just defined.
Further, the common surface between the patch and base plate and its extension (the upper
surface of the base plate) shall be used as the "reference surface". We shall examine three
types ofloading conditions. These include (i) applied in-plane radial tension, (ii) transverse
edge/centerpoint loading ("pseudo three-point loading") and (iii) applied transverse pres­
sure. A variety of support conditions will be considered as well.

The problem shall be approached as a moving intermediate boundaries problem in the
calculus of variations, incorporating von Karman's plate theory for the mathematical
models for both the base plate and the patch individually, and a Griffith's type energy
balance to govern debonding. We begin by formulating an energy functional II defined by

3

II = L {UU)+U~)}-'1f -A+C
i= 1

(I)

where the quantities [J.i) and U~) correspond to the strain energies of the base plate and
patch in region Q i (i = 1-3), respectively, which, for the mathematical models employed,
may be expressed in terms of the corresponding bending and membrane energies
(U~), Ulj) and (U~1, Uljp). Hence,

(2a,b)

where:

UU) = 21li .!{NU)eU)+NUleU)}rdrAt 2 rrrr 008fJ ,
n,

UU) = 21l i ! {M(Pi) K{Pi) +MlPi) K(pi)} r dr
Bp 2 rr rr 88 88 ,

n,

i I ..
U U) =21l -{N(PI)e{Pi)+N(PI)e(Pi)}rdr

Mp 2 rr rr 88 88 .
n,

(3a)

(3b)

(3c)

(3d)
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In the above expressions, the quantities M~~ and M¥6, respectively, correspond to the
(normalized) resultant cross-sectional bending moments in the radial and circumferential
directions about the centroid of the base plate in region Qi (i = 1-3), while the quantities
K~~ and K¥~ are the associated curvatures. Similarly, the quantities N~~ and N¥J represent
the normalized resultant membrane forces in the base plate in region Qi (i = 1-3) for the
directions indicated, while e~~ and d:J represent the corresponding membrane strains at the
centroid of the base plate. Likewise, the quantities M~~i), MifHi), K~~i), K?foi), N~~i), Ni!H'), e~~i)

and e?foi) represent the counterparts of these quantities for the patch. As the class of problems
under consideration are axisymmetric, the cross terms M~2, K~2, N~2, e~2, M~Ci), K~Si), N~SI),

and e;Si) all vanish and thus do not appear in the strain energy functionals defined by eqns
(3a)-(3d). Further, the functional "If!~ represents the work done by the applied loading, and
for the problems under consideration, is given by

ir = 2nTou,(l), or 1f~ = -2nQow,(l), or '#~ = 2nI r pwirdr,
1= IJOi

(4a,b,c)

where To is the normalized intensity of the applied in-plane edge load, Qo is the normalized
intensity of the transverse edge load, and p is the normalized applied (transverse) pressure.
The quantity A appearing in eqn (I) represents a constraint functional and is given by

(5)

where the quantities (Ji (i = 1,2; (J2 < 0) and T are Lagrange multipliers (and correspond
to the interfacial stresses in the composite structure). Finally, the functional r is the
"delamination energy" and is given byt

r = 2yn(a*2 -af).

In eqn (6), the quantity r is the normalized bond energy (bond strength),

a* = I-a,

(6)

(7)

is the "conjugate bond zone radius" which is seen to locate the bond zone boundary with
respect to the edge of the base plate, and a~ is some initial value of a*. The symbol e5

corresponds to the variational operator. In the above expressions, the normalized loads To,
Qo, and p are related to their dimensional counterparts f, <2, and p, by

where 15 is the dimensional bending stiffness of the base plate and R is its dimensional
radius. In a similar manner, the normalized bond energy r is related to its dimensional
counterpart y, by r = yR2

; 15. The interfacial stresses, (Ji (i = 1,2) and T, are related to their
dimensional counterparts in a manner similar to that for the applied pressure p.

In the development to this point, and in what follows, the functions ulr) and wi(r)
(i = 1-3) correspond to the normalized radial (positive outward) and transverse (positive
upward) displacements, respectively, of a material particle located on the centroidal plane
of the base plate in region Qi (i = 1-3), while upi(r) and Ivpi(r) (i = 1-3) represent the
corresponding displacements of the centroidal plane of the patch. In addition, the functions
ui(r) and u;i(r), respectively, correspond to the radial displacements of the base plate and
patch at the reference surface and are related to their individual centroidal counterparts by

t More generally, " may be considered to be an implicit function of a* with r defined in terms of its first
variation, Jr, where ilr = 2;" bra* Ja* is seen to represent the virtual work of the generalized force 2,"
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h ,
uf(r) = ui(r) - 2: lI'i(r), and (8a,b)

where hand hp correspond to the normalized thicknesses of the base plate and the patch,
respectively, and primes denote differentiation with respect to r. (Within the context of von
Karman's plate theory, the transverse displacements are considered uniform through the
thickness of the individual plates, i.e., II'f = IV" 11';' = It'pi throughout.) Similarly, the cor­
responding membrane strains at the reference surface, e~Ii)(r), et/) (r), e~IPi)(r), and
etoIPi)(r) are related to their counterparts at the centroidal surfaces of the individual plates
by

and

h
e*(il(r) = e(i)(r)- -K(i)(r)

rr rr 2 rr ,

. . h.
e* Ipl) (r) = elPI )(r) - - KIPI )(r)

rr rr 2 n ,

. .. h ..
e* II) (/,) - ell) (r) - - K II ) (r)

1111 - 1111 2 00 ,

.. h
e* Ipi) (r) - elpl) (r) - - K·IPi) (r)

1111 - 011 2 00 .

(9a,b)

(9c,d)

Further, for the present model, the constitutive relations and strain/curvature-displacement
relations for the individual primitive plates in region 0 , (i = 1-3) are given by

N(il = C {e(i) + ve(i)) = C {(u'+! w,c)+v~}" ,,011 f I 2 I r

N(i) = Cfe(i)+ve(i))· = c{~ +v (u'+ ~W'c)}00 I 1111 " J r I 2 I

MIPi) = D {K IPi )+ V KIPi )) = D {WI' + V Il'~i}
IT pTr pfWj P IJI fJ r

. . . {Il'~ }MIpJ) = D {K IPi )+ V K1Pl) 1. = D - + v WI'011 p 1111 p" J P r P pi

Nlpi) = C leIPi)+v elpi)) = C {(u'.+ ~11"2)+V UPi}" Pl" P 00 J P pI 2 pi P r

(lOa)

(lOb)

(lla)

(II b)

(12a)

(12b)

(13a)

(l3b)

where the parameters C and D, respectively, correspond to the normalized membrane
stiffness and bending stiffness of the base structure, while the parameters Cp and Dp similarly
correspond to the normalized stiffnesses of the patch. Likewise, the parameters v and vp

represent Poisson's ratio of the base plate and the patch, respectively. The particular
normalization of the stiffnesses of the primitive plates that is selected is based on the
dimensional radius and bending stiffness of the base plate. We thus have



2260
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and E and Ep correspond to the (dimensional) elastic moduli of the base plate and patch,
respectively.

We next invoke the Principle of Stationary Potential Energy which, in the present
context, may be stated as

c511 = 0 (14)

where c5 is the variational operator.
Upon substitution of eqns (1)-(13) expressed in terms of the displacements at the

reference surface, performing the appropriate variations-allowing the intermediate bound­
aries r = a and r = b to vary, eliminating the Lagrange multipliers, and grouping terms
accordingly, we arrive at the governing differential equations for the intact segment of the
composite structure, for the debonded segment of the composite structure in the contact
zone, and for the primitive plates in the zone of separation. Hence,

with

{MW -(rM;:I)'r + (rN;:)w;)' = -rp, (rEn3)

{M(P3J_(rM(p3»)'}'+(rN(P3 Jw' )' = 0
()e rr rr p3 ,

w1(B) = w;;(B), K1(B) = K;;(B), (rEn;;i= 1,2)

uf(B)=u;,(B), (rEn l)

(15a-i)

(l5h-i)

(l6a)

(l6b)

(l7a)

(l7b)

(18a,h-i)

(l8c)

where the corresponding constitutive relations for the composite structure are found as

h hM* (2) = D K* (2) + D K* (2) + - N(2 l _ ~N(p2)
rr r ·rr 8 ()f) 2 rr 2 rr ,

h hM* (2) - D K* (2) + D K*(2) + - N(2 1 _ ~ N(p2lee - r ee e rr 2 ee 2 ee,

(l9a)

(l9b)

(l9c)

(19d)

(1ge)

(l9f)

(l9g)
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(19h)

In eqns (19), the functions M;',(i) , M1/), N;',(i) and N10 (i) correspond to the (normalized)
resultant cross-sectional moments per unit azimuthal width of the composite structure,
measured with respect to the reference surface, and the corresponding resultant membrane
forces. The stiffnesses and other parameters in eqns (I9a)-(I9f) are obtained as

c h hp
B = 2vC - 2vpCp,

C* = C+Cp,

C= = vC+vpCp,

D* = A* - p*B*,

p* = B*/C*,

Dr = D+Dp,

Do = vD+vpDp,

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

(20h)

(20i)

(20j)

where we have also introduced the parameters D* and p*, pertaining to the intact segment
of the composite structure, for later use. The parameter p* may be seen to locate the neutral
surface of the intact composite structure with respect to the reference surface, while the
parameter D* represents the corresponding radial bending stiffness with respect to the
neutral surface. The stiffnesses Dr and Do are seen to, respectively, correspond to the radial
and azimuthal bending stiffnesses of the debonded segment of the composite structure. The
associated boundary and matching conditions are similarly found as

(2Ia,b)

[M1o(l) - (rM;',(! ))']r~ 0 = 0, (radial tension and transverse pressure) (2Ic)

or

nvrlr~O = 0, (transverse edge loading) (21 c')

uf(a) = u~(a) = U;2 (a), (22a,b)

N;',(I)lr~(j = N;',(2)lr~(j' (22c)

wf(a) = w~(a), wf'Ca) = wna), (22d,e)

(23c,d)
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wi(b) = w,(b) = wp,(b),

wf(b) = w',(b) = w~3(b),

M*(2) I = [M(3) + ~ N(3) + M(p3) _ hpN(P3)]
rr r = h rr 2 rr rr 2 rr ~

r=h

(23e,f)

(23g,h)

(23i)

or

UJ(I) = 0 or N;;)lr~ I = To,

M;;')lr~1 =0 or w',(I) =0,

W 3 (1) = 0, (radial tension and transverse pressure)

(24a,a')

(24b,b')

(24c)

[MW -M;;) -reM;;)' - N;;)w',)]r~ 1 = - Qo (transverse edge loading) (24c')

N;;Pllr~R = 0, M;?)lr~R = 0, (24d,e)
f f

[M I3p)_Mi3p)_r(M(3p)'_N(Jp)I'/)] =0 (24f)
00 rr rr rr 3p r = Rp •

The resulting transversality condition(s) for the bond zone boundary, r = a, can be expres­
sed as

where:

indicates the "jump" across the bond zone boundary r = a for any function F*(r). For the
jumps in moment and membrane force appearing in eqn (25b) the expressions M:o(3) and
Nte(3) are interpreted by eqn (l9f) with the first two terms replaced by eqns (lOa) and (lOb),
and by the equality (l9h), respectively, with the index 2 replaced by 3 in each case. The
quantities ~"",{a} and ~1I{a}, i.e., the left hand sides ofeqns (25a) and (25b), are identified
as the energy release rates. The conditions (25) suggest the following delamination criterion:
if, for some initial value of a = ao, we have that ~{ao} ~ 2y, then debonding occurs and the
system evolves (a decreases-a* increases) such that the corresponding equality (25a) or
(25b) is satisfied. If~{ao} < 2y, debonding does not occur.

For a propagating contact zone boundary r = b > a, the associated transversality
condition reduces to the form

(26a,b)

to which we add the qualification
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(26c)

in order to prohibit penetration of the patch and base plate in the zone of separation and
thus restrict the set of equilibrium configurations to consist of those corresponding to
physically realizable configurations of the evolving structure. Equations (26a)-(26c) are
seen to be a statement to the effect that equilibrium configurations of a propagating contact
zone boundary correspond to the point at which the curvatures of the base plate and patch
first become equal, when proceeding from the edge of the structure to the center of the
span. If such configurations do not occur, then either b = a or b = Rp • For the latter case
a "full contact zone" occurs, hence the lifted segment of the patch does not exist and the
condition

(26')

is imposed. If b = a, then the condition of "edge contact", the situation in which only the
free edge of the patch maintains sliding contact with the base plate, is possible. (For the
purposes of brevity and clarity of presentation, the formulation for this case is not presented
here but may be found in Appendix B.) Alternatively, b = a and no contact occurs between
the debonded segments of the primitive structures.

At this point the general formulation of the set of problems of interest is established.
The corresponding solution is presented in the next section.

3. ANALYTICAL SOLUTION

We next present an analytical solution corresponding to the linearized version of the
equations governing the set of problems stated in the previous section.

Upon linearization, the governing differential eqns (15)-(17) simplify to the forms
given by

where:

Y {U*l = -p*Y Jw }r !Jcl I,

Yr{U;} =0, (rEn,;i=2,3)

Yr{up;} = 0, (rEn;;i = 2,3)

(27a-i)

(27b)

(28a)

(28b--i)

(28c-i)

(29a---<:)

(30a)

(30b)

(30c)

The coupled system (27a)-(28c) is solved to give the following forms for the transverse
displacements in each region:
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pr4 r2

wT(r) = 64D* + A~I) 4 + Abl
), (pressure or tension loading)

r
2

{ Q }wT(r) = 4 A~I) + D~ [In(r) -I], (transverse edge loading)

(3Ia)

(31 a')

(pressure or tension loading) (r En 3 ) (31 c)

Qo , A~3) ,

W3 (r) = - 4D [r 2
- (l + r) In(r)] + 4 [r- + 211 In(r)] + A 3

),

(transverse edge loading) (rEn3 ) (3Ic')

where

a = 11 = -1, (clamped supports)

(3Id)

(32a,b)

a =(3+v)/(l-v), 11 = (l +v)/(l-v), (pinned supports or transverse edge loading)

(32a',b')

(32c)

and the parameters Aii) (i = 1-3,) = 0-3) and Ap
3) and Ali3

) are constants.
The corresponding forms for the associated in-plane displacements are similarly given by

*
uT(r) = bfr- l~~* r 3

, (rEn l ) (pressure or tension loading) (33a)

uT(r) = bfr- ~;*o r In(r), (rE 0 1) (transverse edge loading) (33a')

u;(r) = buf(r) + £or, (r E0;; i = 2,3) (33b)

up;(r)=bJr,(r), (rEO;;i=2,3) (33c)

where

1 1
fer) = - + f3r, /per) = - + f3pr, (r En i ; i = 2,3)

r r

£0 = ToW + v)C, (in-plane radial tension loading)

£0 = 0, (pressure and transverse edge loading)

f3 = (I - v)/(l + v) = 1/11, (edge free to translate in-plane)

f3 = -1, (edge fixed against in-plane translation)

f3p =(l-vp)/(l +vp)R; = 1/111"

and the parameters bf, bo, and bp are constants.

(34a,b)

(35)

(35')

(36a)

(36a')

(36b)
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The sets of constants {bf,bo,bp } and {AjO (i = 1-3;j= 0-3), A~3I,AY'3)} are found
from the matching conditions at r = a, and at r = a and r = b, respectively, for the particular
loading and support conditions corresponding to each problem of interest.

The interfacial stress in region nb the contact stress (12, is found from the equation
governing transverse deflections of the segment of the patch in the contact zone (not
presented), and from the corresponding equation for the segment of the composite structure
in the contact zone, eqn (l5a-2). This gives the relation

(37)

It is seen from eqn (37) that the contact stress vanishes when the pressure vanishes. From
this it may be concluded that a contact zone will not be present for the cases of applied
radial tension and transverse edge/center point loading. The issue of a contact zone,
therefore, need not be considered for these loading cases. It is also seen, from eqn (37), that
the contact stress will be compressive when p > 0, and thus that a contact zone may exist
for the case of pressure loading. The presence ofa contact zone must therefore be considered
for this case.

Lastly, the expressions for the bond zone interfacial stresses, (1t and T, are given in
Appendix A.

The formulation and solutions presented herein provide the basis for examination of
the evolution of composite structures of the class under consideration. Specific studies, in
this regard, are presented in what follows. We first present an outline of the analysis to be
performed.

4. ANALYSIS

In this section we present an outline of the analysis of the problems of interest, based
on the analytical solution presented in Section 3.

We first define the normalized loading parameter ;. and characteristic deflection ~, for
each of the specific problems of interest as follows:

;. = To, ~ = ~R == U3(l), (applied in-plane tension) (38a,b)

;. = Qo, ~ = ~ I == - W3 (1), (transverse edge/center point loading) (38c,d)

;. = p, ~ = ~o == W! (0), (applied pressure) (38e,f)

where ui(r), Wier) (i = 1-3, 0 ~ r ~ I) are the normalized radial and transverse deflections,
respectively, of the segment of the base plate in region i, and r is the radial coordinate, as
previously defined.

We shall also define the "global stiffness" for each problem as

K == )./~, (39)

for each ().,~) pair defined in eqn (38).
Since the analytical solutions upon which the forthcoming analysis is based correspond

to a linearization of the governing equations and conditions presented in Section 2, the
response in each case will be found to be proportional to the particular loading parameter
corresponding to the specific problem under consideration. Therefore, the energy release
rates can be written in terms of the loading parameter explicitly, for each case under
consideration. The equations for the growth paths/threshold curves A vs a (or a*) and ~ vs
a (or a*) may then be found directly from the transversality conditions (25), and take the
general forms

).* == A/J2r = lfJg(a,b;S),

~* == ~/J2Y = K-t(a,b;S)/Jg(a,b;S),

(40a)

(40b)
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where g(a, b; S) is the normalized energy release rate per square of the normalized load, S
is the set of stiffnesses of the structure and (I,*,!l*), with labels }.* - {T*,Q*,p*},
!l*...., {!l~,!l r, !l~}, correspond one to one with each (),,!l) pair defined earlier. In this way,
the evolution of the debonding structure may be characterized using the analytical solution
presented in Section 3, for each particular problem of interest. Results for specific con­
figurations are presented next.

5. RESULTS AND DISCUSSION

Results are presented for the following loading conditions: (I) applied (in-plane)
radial tension, (2) transverse edge/center point loading, and (3) applied transverse pressure.
The results presented correspond to the linear analyses outlined in the previous section.
For the purposes ofcomparison, we shall in each case consider a system with the normalized
thicknesses of the patch and base plate hI' = h = 0.05, and compare results for the modulus
ratios Eo = I, 0.1, and 10. In each case, with the exception of the case of transverse edge
loading, the effects of various support conditions on the behavior of the evolving structure
are examined. Results corresponding to each type of loading are discussed independently.

5.1. Radial tensile loading
We first consider the case where the base plate is loaded around the circumference of

its edge by a radially directed, in-plane, tensile load of intensity To. Results are presented
for both the situation where the edge of the base plate is free to rotate (hinged), and the
case where the edge of the base plate is prohibited from rotating (clamped). In each case
the edge is free to translate in the plane of the undeformed plate. We recall from Section 3
that a contact zone does not occur for this type of loading. We first consider the case of
hinged supports.

Hinged supports. Results for the case of hinged supports are presented in the form of
threshold curves in terms of the renormed tension T* = To)2Y and characteristic (radial
edge) deflection!l~ = u,(I)/)2Y as functions of the conjugate bond zone boundary a*. In
addition, the associated stiffness degradation curves K vs a*, where K = T* /!l~ are presented
as well. In each case, paths are shown for each of the modulus ratios Eo = 0.1, I, and 10.
The paths for patch radii Rp = I, 0.8, 0.6, 0.4 and 0.2 are shown, respectively, in Figs 3a--e,
while a comparison of the paths corresponding to RI' = 0.9, 0.6 and 0.3 is displayed in
Fig. 3f. Upon examination of these figures it is seen that, for force controlled loading,
debonding occurs catastrophically for each modulus ratio considered and for all relative
radii of the patch. For deflection controlled loading, debonding is seen to occur in a similar
fashion for the relatively compliant patch (Eo = 0.1) and for the intermediate patch (Eo = I)
for all patch radii, while the relatively stiff patch (Eo = 10) is seen to debond in a moderately
stable fashion for large patches, and to debond catastrophically for patches whose radii are
such that Rp < 0.8. In addition it may be observed that, for given Eo and a*, debonding
ensues at higher load levels as Rp diminishes. It is also seen that, as for related studies
(Bottega, 1995; Bottega and Loia, 1996; Loia and Bottega, 1995), stiffer patches debond
at lower load levels in all cases.

Clamped supports. Threshold curves, and the associated stiffness degradation curves,
for the case of clamped supports are displayed in Figs 4a~f for patch radii of Rp = I, 0.8,
0.6, 0.4, 0.2, and a comparison of Rp = 0.9, 0.6 and 0.3, respectively. On consideration of
these figures, it may be seen that the predicted debonding behavior of the system is
substantially influenced by the modulus ratio and also by the size of the patch. One general
trend that may be observed is that decreasing the patch size tends to have a destabilizing
effect on the debonding behavior for both force controlled and deflection controlled loading
situations, though (as for the case of hinged supports) the load level at which debonding
ensues is progressively higher. Similar trends toward destabilization are also seen for a
given patch size, as the size of the bond zone diminishes (a* increases). For the case of
force controlled loading, it may be seen that debonding occurs in a stable manner for
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relatively large patches for both the compliant and intermediate patch stiffnesses (Eo = 0.1
and Eo = 1) for all bond zone sizes. However, while the stiff patch (Eo = 10) is seen to first
debond in a stable manner, debonding is seen to become catastrophic once the bond zone
shrinks to a critical size (a* - 0.25). Debonding behavior under deflection controlled
loading, for all three modulus ratios, is seen to be qualitatively similar to that for the
compliant and intermediate patches under force controlled loading. It is also interesting to
note that the destabilizing influence on debonding behavior associated with decreasing the
patch radius is least pronounced for the intermediately stiff patch (Eo = 1). Finally, it may
be observed that debonding is catastrophic for all cases once the patch radius is below half
the radius of the base plate.

5.2. Transverse edge/centerpoint loading
The threshold curves and stiffness degradation curves for the case where the base plate

is subjected to a distributed transverse load of intensity Qo applied around the circumference
of the edge of the base plate and supported by a knife edge at its center (or equivalently
loaded by an inverted point load of magnitude npQo at its center and supported by a
continuous knife edge around its boundary) are displayed in Fig. 5. The paths are expressed
in terms of the renormed load intensity Q* = Qo/~ and characteristic (transverse edge)
deflection .1T = -W3(l)/~, with the corresponding global stiffness defined as
K= Q*/.1f,

Upon consideration of these figures, it may be seen that debonding occurs in a
catastrophic manner for all patch sizes and bond zone sizes for the case of force controlled
loading. Further, debonding is seen to occur catastrophically for all patch sizes and bond
zone sizes for the relatively compliant patch (Eo = 0.1) for deflection controlled loading as
well. For the case of deflection controlled loading for the intermediate and stiff patches
(Eo = 1and 10, respectively), however, debonding is seen to occur in a catastrophic manner,
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Fig. 5. Threshold curves/delamination paths and stiffness degradation curves for patched plate
under transverse edge loading for Rp = 0.9 (i), 0.6 (ii), 0.3 (iii).
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in an unstable followed by a stable manner followed by a catastrophic manner, or in a
stable followed by a catastrophic manner, depending upon the initial size of the bond zone
and on the relative size of the patch. In addition, the catastrophic growth for these latter
two stiffnesses is seen to occur for relatively small bond zone sizes first (i.e., for smaller a*)
for the intermediate patch (Eo = I) and then for the relatively stiff patch (Eo = 10), during
deflection controlled loading. The observed tendency toward unstable debonding as the
patch size and bonded region diminish, during deflection controlled loading, differs sub­
stantially from the behavior seen for the less constrained analogous case of three-point
loading of a rectangular plate with through the width debonding (Bottega, 1995) and the
corresponding case for a cylindrical panel (Bottega and Loia, 1996).

5.3. Applied transverse pressure
The behavior of the patched circular plate subjected to transverse pressure applied to

the underside of the base plate, as depicted in Fig. 2, will be examined for both the case of
hinged supports and the case of clamped supports. For each type of support pertaining to
rotation we will also consider the effects of fixing or freeing the supports with regard to
in-plane radial translation. We thus consider "hinged-free" and "hinged-fixed" support
conditions, and "clamped-free" and "clamped-fixed" support conditions. The cor­
responding threshold curves are expressed in terms of the renormed pressure p* = Poj2Y
and characteristic (centerpoint) deflection Ll~ = WI (O)/j2Y as functions of the conjugate
bond zone radius a*, while the associated stiffness degradation curves are similarly expressed
in terms of the corresponding global stiffness K = p*/Ll~. The case of hinged support
conditions is considered first.

Hinged supports. Threshold and stiffness degradation curves for the case of hinged­
free support conditions are displayed in Fig. 6, while those for the case of hinged-fixed
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support conditions are presented in Fig. 7. We note that, as for previous studies pertaining
to analogous configurations (Bottega, 1995; Bottega and Loia, 1996) no contact of the
debonded segments is found to occur for the case of hinged supports, free or fixed.

Upon consideration of the curves corresponding to the case of hinged-free supports,
it may be seen that, for the case of force controlled loading, catastrophic debonding ensues
once the threshold level of the pressure is achieved, for all relative patch sizes. It is seen,
however, that for the case of deflection controlled loading, catastrophic debonding occurs
only for the situation where the patch is the same size as the base plate and is bonded over
most of its area for the stiff and intermediate patches (Eo = 10 and Eo = 1). Otherwise,
debonding is seen to occur in an unstable followed by a stable manner, or in a stable
manner, depending upon the relative size of the patch and the corresponding initial size of
the bonded area, for these patch stiffnesses, and is generally stable for moderate and small
patch areas. For the case of the compliant patch (Eo = 0.1) under deflection controlled
loading, however, catastrophic debonding is seen to occur for all patch sizes, when the
patch is initially bonded over most of its area. Otherwise, debonding is seen to be unstable
followed by stable, or stable, for the compliant patch as well. The exception being that
catastrophic debonding is observed for very small patches regardless of the initial size of
the corresponding bond zone for the relatively compliant patch.

The curves corresponding to the situation where the supports are fixed against in­
plane translation, depicted in Fig. 7, show the same general trends and do not differ
appreciably from those corresponding to the case of hinged·free supports, except for the
case where the patch is of the same size as the base plate and is bonded over most of its
area. For this situation, fixing the supports from translating tends to have a stabilizing
effect with regard to debonding. It may be seen that the relatively stiff patch never exhibits
catastrophic debonding for this case, and exhibits limited unstable debonding only for
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bonded regions which cover most of the area of the base plate, subsequent debonding being
stable in nature.

We next consider the effects of fixing the edges ofthe base plate with respect to rotation.

Clamped supports. In the remainder of this study we consider the evolution of the
patched circular plate when it is subjected to transverse pressure loading, for the situation
where the edges of the base plate are prohibited from rotating (i.e., are clamped). For this
type of support condition, whether the edges are free to translate in-plane (clamped-free)
or restricted from translating in-plane (clamped-fixed), it is found that a contact zone
adjacent to the bond zone boundary does exist for patches of relatively large radius
that are bonded over most of their area. As for related studies concerning analogous
configurations (Bottega, 1995; Bottega and Loia, 1996), it is found that when such a
contact zone is present, the entire debonded portion of the patch maintains contact with
the base plate. We refer to this situation as "full contact" of the debonded segment of the
patch and similarly designate the corresponding region as a "full contact zone". In addition
to the possible presence of a contact zone, we also consider the possibility of "edge contact"
where the free edge of the debonded region of the patch maintains (sliding) contact with
the base plate while the remainder of the debonded region of the patch is lifted away from
the base plate except, of course, at the bond zone boundary. As for the presence of a contact
zone, the condition of edge contact is found to occur only for relatively large patch sizes.
Finally, the existence of a contact zone emanating from the free edge of the patch and
terminating before reaching the bond zone boundary ("non-adjacent" contact zone), is
also examined. This type of contact, however, is not found to occur for physically realizable
configurations of the evolving structure. When none of the contact conditions discussed
admit physically realizable solutions, it is evident that propagation of the debonded region
occurs with the entire debonded segment of the patch lifted/separated away from the base
plate.

Thus, equilibrium configurations are sought for the cases where: (i) no contact between
the debonded segments takes place, (ii) a contact zone (adjacent to the bond zone) is present,
(iii) sliding contact of the free edge (edge contact) of the debonded segment of the patch
with the base plate takes place and (iv) a "non-adjacent" contact zone is present. The
analysis concerning edge contact is based on a slight modification of the formulation
presented in Section 2 and is given in Appendix B. We note that the analysis concerning
the presence of a "non-adjacent contact zone" basically follows that presented for the
contact zone adjacent to the bond zone boundary, but with regions 2 and 3p interchanged
and the associated matching conditions modified accordingly. In situations where more
than one physically admissible equilibrium configuration (e.g., configurations where no
penetration of the debonded segments of the patch and base plate is present, etc.) may be
obtained, the preferred configuration is identified as the one corresponding to the lowest
total energy of the system for that specific size of the bonded region for a given load. The
specific calculation, in this regard, is based on the total work per unit pressure, "If/*, for the
particular displacement field predicted for each configuration based on the analytical
solutions presented in Section 3. Thus, from eqn (4c), we have

(41)

where wi(r); i = 1~3 are given by egns (31a)-(31c).
Results corresponding to clamped-fixed support conditions are presented in Figs 8­

12, while results corresponding to clamped-free support conditions are displayed in Figs
13-16. We first examine the case where the edge of the base plate is prohibited from
translating.

As discussed earlier, contact of the debonded segments of the base plate and patch is
found to occur for relatively large patch sizes only. That is, patches with bounding radii
below certain values do not admit physically realizable contact configurations based on the
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present analysis. In this regard threshold curves for the case of the clamped-fixed supports
are displayed in Figs 8a-8d for patch radii Rp = 1.0, 0.9, 0.8 and 0.7, for the case of a
relatively compliant patch (Eo = 0.1). Similar results are displayed in Figs 9a-9d for the
intermediate stiff patch (Eo = 1.0), and in Figs lOa-lOd for the relatively stiff patch
(Eo = 10.0). In each case it is found that, where multiple configurations are possible (full
contact, edge contact and no contact), the configuration corresponding to full contact
requires the least total energy of the system, followed by the configuration associated with
edge contact and lastly by no contact. We thus identify this order as the order preference
of the system. The corresponding work per unit pressure 1fi** =if!'* /2n is displayed as a
function of the conjugate bond zone radius a* in Fig. 11, for the case where Rp = 0.9 and
Eo = 0.1. It may be noted that the limiting value of the edge contact curve intersects the
energy curve associated with no contact at that point. The work (total energy) curves
corresponding to the other cases considered show similar trends but are omitted for brevity.
With this in mind, the threshold curves for the case of the compliant patch may be
interpreted and the corresponding debonding scenario revealed.

Upon examination of Figs 8a-8d it may be seen that the threshold curves corresponding
to "full contact" (FC) possess an asymptote separating regions of stable debonding to the
left of the asymptote and unstable debonding to its right. The size of the stable region is
seen to diminish with the patch radius, and to disappear for the limiting patch radius
permitting contact of the debonded segments (Rp = 0.7). It is thus seen that, for Rp = 1.0,
0.9, and 0.8, if the bonded region covers most of the patch, then when debonding ensues it
occurs in a stable manner and tends to arrest. If the initial bonded region is slightly smaller,
such that a~ lies to the right of the asymptote but to the left of the "edge contact" (EC)
cutoff, then when debonding occurs it occurs in an unstable fashion until the limiting value
of a* corresponding to full contact is achieved. At this point the debonded segment of the
patch lifts off from the base plate but maintains contact at its edge, forming a "bridge",
while debonding unstably until the limiting value of a* allowing edge contact (EC) is
achieved. At this point the edge of the patch lifts away from the base plate and the structure
debonds catastrophically with no contact (NC) between the debonding segments of the
patch and base plate taking place. If the initial bonded area is such that a~ lies to the right
of the FC cutoff but to the left of the EC cutoff, debonding begins with the edge of the
patch in contact with the base plate and proceeds, as for the previous case, with the patch
subsequently lifting away from the base plate and catastrophic debonding ensuing with no
contact of the debonded segments. The general tendencies just described are seen to occur
for all patch sizes admitting contact, with the small range of values of a* where edge contact
occurs following lift off seen to diminish with patch radius and to vanish for the limiting case
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Fig. 9. Threshold curves for patched plate under applied pressure for the case of clamped-fixed
supports with Eo = 1.0: (a) Rp = 1.0, (b) Rp = 0.95. (c) Rp = 0.90, (d) Rp = 0.85. (FC-"full

contact", EC-"edge contact", NC-"no contact".) (Continued overleaf)
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Clamped-fixed pressure (Rp = 0.85, Eo = 10.0)
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(Rp = 0.7). The threshold curves corresponding to the stiffnesses Eo = 1.0 and Eo = 10.0
displayed in Figs 9 and 10 indicate similar behavior except that the conjugate bond zone
radius corresponding to the asymptote occurring for the full contact paths, and the range
of patch radii for which contact may occur, are seen to diminish with increasing stiffness
of the patch. It is interesting to note that while edge contact does not occur for the case of
the relatively stiff patch (Eo = 10.0), full contact does. The tendency of the presence of
contact to diminish with increasing relative stiffness of the patch was observed for the
patched plates examined by Bottega (1995) and for the similarly configured curved panels
examined by Bottega and Loia (1996). However, in both of those studies contact was not
observed at all for the relatively stiff patch. As mentioned earlier, patches whose radii are
small enough are found not to allow any contact of the debonded segments of the structure
at all. In this regard the threshold curves, and associated stiffness degradation curves,
corresponding to the case of no contact are displayed in Fig. 12 for patch radii of Rp = 0.7,
0.5, and 0.3. Upon consideration of these curves it may be seen that debonding occurs in a
catastrophic manner for force controlled loading. Debonding for displacement controlled
loading, however, is seen to occur in a stable manner, in an unstable followed by a stable
manner, or in a catastrophic manner depending on the initial size of the bonded region and
on the relative stiffness of the patch. It may be seen that for displacement controlled loading
stiffening the patch tends to stabilize the debonding process, though the critical level is still
lowered as the stiffness of the patch is increased.

Finally, we examine the effect of freeing the supports with regard to in-plane trans­
lation. Paralleling the description for the case of clamped-fixed supports just presented, the
paths corresponding to clamped-free supports, for patch sizes where contact occurs, are
displayed in Figs 13-16. The general characteristics are seen not to differ markedly from
those for the case of clamped-fixed supports, except that the critical points, i.e., the asymp­
totes for the FC paths, the cutoff points for the FC and EC paths etc., are seen to shift
away from the edge (i.e., the corresponding value of a* shifts slightly to the right) and the
corresponding threshold pressure for the cutoff point is elevated slightly. The debonding
scenarios for the case of clamped-free supports are thus seen to be qualitatively similar to
those for the case of clamped-fixed supports just discussed; however, releasing the radial
constraint at the support has a slight destabilizing effect.

To conclude, we remark that, by virtue of eqn A2 (Appendix A), the "large scale"
interfacial normal stress is seen to be compressive for the case of pressure loading (and to
vanish for the other loading types considered herein) and more importantly is independent
of a*. If this is considered to be representative of some average of the "small scale" stress
field, or the loading at a distance from the debonded edge for the small scale, then it may
be inferred that mode-I debonding, in the spirit of interfaciai fracture, does not occur. In a
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(e) Clamped-fixed pressure (Rp =0.96, Eo =10.0)
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Fig. 10. Threshold curves for patched plate under applied pressure for the case of clarnped-fixed
supports with Eo = 10.0: (a) Rp = 1.0, (b) Rp = 0.99, (c) Rp = 0.96. (FC-"full contact", EC-

"edge contact", NC-"no contact".)
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Clamped-fixed pressure (Rp =0.9, Eo == 0.1)
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Fig. 12. Threshold and stiffness degradation curves for the case of clamped-fixed supports (and no
contact) for Rp = 0.7 (i), 0.5 (ii), 0.3 (iii).
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{a} Clamped-free pressure (Rp =: 1.0, Eo =: 0.1)
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(b) Clamped-free pressure (Rp =: 0.9, Eo = 0.1)
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Fig. 13. Threshold curves for patched plate under applied pressure for the case of clamped-free
supports with Eo = 0.1 : (a) Rp = 1.0, (b) Rp = 0.9, (e) Rp = 0.8, (d) Rp = 0.7. (FC-"full contact",

EC-"edge contact", NC-"no contact".) (Continued overleaf)



2284 W. J. Bottega and M. A. Loia
(d) Clamped-free pressure (Rp =0.7, Eo =0.1)
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(a) Clamped-free pressure (Rp =1.0, Eo = 1.0)
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(b) Clamped-free pressure (Rp =0.95, Eo = 1.0)
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Fig. 14. Threshold curves for patched plate under applied pressure for the case of clamped~free

supports with Eo = 1.0: (a) Rp = 1.0, (b) Rp = 0.95, (c) Rp = 0.90, (d) Rp = 0.85, (e) Rp = 0.83.
(FC-"full contact", EC-"edge contact", NC-"no contact".) (Continued opposite.)
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(a) Clamped-free pressure (Rp = 1.0, Eo = 10.0)
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(b) Clamped-free pressure (Rp =0.97, Eo =10.0)
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(e) Clamped-free pressure (Rp =0.94, Eo = 10.0)
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Fig. 15. Threshold curves for patched plate under applied pressure for the case of clamped-free
supports with Eo = 10.0: (a) Rp = 1.0. (b) Rp = 0.97. (c) Rp = 0.94, (d) Rp = 0.91. (e) Rp = 0.88.

(FC-"full contact", EC~"edgecontact", NC-"no contact".) (Continued opposite.)
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(d) Clamped-free pressure (Rp '" 0.91, £0 =10.0)
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(e) Clamped-free pressure (Rp '" 0.88, £0 =10.0)
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Fig. 15-·-Continued.

less restricted sense the preceding argument implies that the modal combination does not
change as the structure debonds. In this sense, the scenarios discussed will not be altered
by modal effects.

6. CONCLUDING REMARKS

The problem of debonding of a patched circular plate has been considered, for a
variety of loading and support conditions. A self-consistent formulation in terms of the
governing differential equations for the intact and debonded segments of the composite
structure, as well as for the individual primitive structures has been presented. This included
the conditions which define the locations of the boundaries of a region of sliding contact
and the boundary of the bonded region of the structure, the latter including the cor­
responding energy release rates expressed in physically interpretable expressions. In
addition, the situation of (sliding) contact of the edge of the patch with the base plate was
also considered. Closed form analytical solutions to the problems at hand were presented.

Extensive results corresponding to detailed numerical simulations based on the afore­
mentioned formulation and analytical solutions were presented, and revealed a variety of
debonding characteristics and critical parameters. These included the presence of contact
(both continuous and edge point) for patches bonded over most of their area for the case
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Fig. 16. Threshold and stiffness degradation curves for the case of clamped-free supports (and no
contact) for Rp = 0.7 (i). 0.5 (ii). 0.3 (iii).

ofpressure loading, and the existence of stable, unstable followed by stable, and catastrophic
debonding behavior depending on the combinations of material and geometric parameters
of the system and the type of loading. Finally, it was observed that the added constraint
due to the azimuthal effects, inherent in the present case, had an effect on the stability of
the debonding process when compared with results of prior investigations of the authors
concerning unidirectional configurations.
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APPENDIX A-BOND ZONE STRESSES

The expressions for the interfacial stresses (Lagrange multipliers) r(r) and 0", (r), rE Q" are found from the
equations for the primitive structures in region Q, (not presented) together with the corresponding equations for
the intact composite structure, eqns (15a, b) for i = I. After some manipulation, we obtain

and

(
h) prr(r) = - Cp p* + i 2D* (pressure or tension loading)

(
hp)Qo/D* .r(r) = - Cp p* + 2 -r- (transverse edge loadmg)

APPENDIX B-FORMULATION FOR EDGE CONTACT

For the case of edge contact, a constraint functional of the form

(Ala)

(Alb)

(A2)

(BI)

is added to the functional given by eqn (5), with 0", = 0, where the quantity Vo is a Lagrange multiplier. For this
case, the debonded segments of the base plate and patch in region 2 are separated, region 3p no longer exists, and
the governing differential equations corresponding to each of these regions take the forms of eqns (16a)-( 17b)
when subscripted accordingly. The boundary and matching conditions at r = 0, r = a and r = I given by eqns
(2Ia)-(22g) and (24a), (24b) retain the same general form, with the parameters corresponding to region 2 with a
superscript * interpreted in the present context-with eqns (l8a, b2) no longer valid.

The boundary conditions (24d) and (24e) corresponding to the membrane force and bending moment at the
patch edge are maintained with the index 3p replaced by 2p. The shear balance at the boundary between regions
2 and 3 is, however, adjusted for the present case as a result of the inclusion of the functional given by eqn (B I).
It takes the form

(B2)

and is accompanied by the matching condition

(B3)

where the Lagrange multiplier, Vo, corresponds to the normalized contact force. The inequality incorporated into
eqn (B2) is imposed in order to restrict solutions to correspond to the physically realizable configurations
associated with compressive contact. In addition, the conditions

(B4a,b)

(B4c,d,e)

replace the conditions given by eqns (23), for the case of edge point contact.
The corresponding transversality condition at r = a and the associated energy release rate, for the present

case, takes the same general form as that of'§,,{a} given by eqn (25b), but with the index 3 replaced by 2.


